
Context-Aware Service Composition in a Home Control Gateway

André Bottaro1, 2, Johann Bourcier1, Clement Escoffier1 and Philippe Lalanda1

1 GRENOBLE UNIVERSITY
Laboratoire LSR-IMAG

38041 Grenoble, Cedex 9, France
{firstname.name}@imag.fr

2 FRANCE TELECOM R&D
28, chemin du vieux chêne,
38240 Meylan. FRANCE

andre.bottaro@orange-ftgroup.com

Abstract

One of the main technical challenges of the
pervasive computing is the ability to build applications
with the capacity to adapt themselves to their
environment. In this paper, we present an open
architecture facilitating the development of home
services. Context dynamicity and service ambiguity are
dynamically managed by smart composing elements.
The architecture is applied and tested in an attractive
home scenario.
Keywords: Service orientation, autonomic computing,
service–oriented component runtime

1. Introduction
Networks of devices will soon assist us in our daily

activities using the notions of goals, context and
knowledge to autonomously decide on the best actions
to be undertaken [1, 2]. Indeed, numerous
manufacturers are already using, or planning to use,
electronic devices to provide services to their
customers, especially in the home context. Many
houses are already covered by wireless and wired
network technologies and filled with electronic devices
allowing the occupants to control their environment
(being for comfort or for entertainment). But several
business and technical challenges complicate the
manufacturers’ ability to develop and manage such
innovative services. To begin, the business models
aren’t ready; it remains unclear how to commercialize
such services and electronic devices or whether
manufacturers should go to the marketplace alone or
with specialized partners. The second concern is
technical. Putting smart services in place is a
challenging task. It requires implementing the
cooperation between heterogeneous devices in
complex environments in which topologies,
communication protocols, security policies, and such
are dynamic and differ from one customer to the next.

In order to allow the development of dynamic,
context-aware applications innovative architectures
based on the notion of service have been recently
proposed [3, 4]. Service-oriented computing (SOC) is
a paradigm that defines services as fundamental
elements for application design. We believe that
service orientation provides the level of flexibility that
is required to build pervasive applications in the home
context. However, a number of challenges still have to
be tackled. In particular, mechanisms are needed to
build truly dynamic applications that can integrate new
conditions at runtime. Most current service-oriented
applications are not dynamic after the initial binding
phase. It is up to the developers to deal with context
evolution and dynamic (re)composition.

The purpose of this paper is to address the above
mentioned limitations. It presents an open computing
infrastructure for the development of pervasive
applications in the home domain. This infrastructure is
based on an extensible service-oriented component
runtime and on local autonomic managers [5] that deal
with context-aware service compositions. This work is
carried out within the ANSO1 project which brings
together major European actors interested in the
development of pervasive home services.

The paper is organized as follows. First we provide
background information about service orientation and
the kind of application we are targeting. Then we
present our approach for home computing. Section 4
details our service-oriented component runtime.
Section 5 presents the local autonomic managers. This
is followed by an illustration in the home context and a
performance evaluation. Finally we conclude by
confronting this work against the state of the art and
pointing out major contributions.

1 This work comes from collaboration in the context of the
ANSO project. The authors are given in the alphabetical
order. ANSO is partially supported by the French Ministry
of Industry under the European ITEA program.

2. Background

2.1. Service oriented computing
The central objective of the service-oriented

approach is to reduce dependencies among “software
islands,” where an island is typically some remote
piece of functionality accessed by clients. By reducing
such dependencies, each element can evolve
separately, so the application is more flexible than
monolithic applications. SOC is based on three actors:
service providers offering services, service consumers
using services and a service broker containing
references to available services specifications. Three
kinds of interactions are defined among these three
actors: service publication between the provider and
the broker to offer services for use, service discovery
between the consumer and broker to find desired
services, and service invocation consumers and
providers to actually use the service. To design
complex service-oriented applications, it is necessary
to compose services, which means that providers may
require other services to provide their own service.

From these concepts, SOC applications can exhibit
interesting characteristics, such as:

• Loose coupling: a consumer does not need to know
anything about the service implementation.

• Late binding: a consumer uses a broker to find
desired services at runtime.

• Dynamic resilience: service rebinding may occur at
any time. A service consumer cannot rely on the
same service implementation being returned by the
broker between invocations.

• Location transparency: providers and consumers
are oblivious to the underlying communication
infrastructure (e.g., local versus remote, specific
protocols, etc.) [6].

Service orientation allows the development of
modular and inherently dynamic applications. It is
however generally based on low level techniques and
requires a deep expertise on the programmer side. In
addition, developers need to manage service dynamism
within the business logic. Developers also need to
manage aspects related to context-awareness. In this
paper, we propose to use an extensible service-oriented
component runtime to develop pervasive application.
This component runtime allow the separation between
the application logic and the context-aware service
interactions.

2.2. Home applications requirements
This section presents an example illustrating the

main requirements of home computing. The ambient
messaging application presented hereafter highlights
the needs in terms of dynamicity and service selection.
It will be also used at the end of this paper to illustrate
our approach.

The purpose of the ambient messaging application
that we are investigating with France Telecom is to
display information and services to the end user on the
most appropriate rendering device. For instance, when
the home inhabitant is watching TV, the system may
direct any communications on the TV by displaying a
message on the TV screen. If the user is having a nap
on the couch, the state of the communications is
viewed through colours and brightness on a lamp
emitting a low-level light. Similarly, when he is in the
kitchen, he may listen to the communications through a
text-to-speech system if no display is available. If he
comes at his desk, the communications are set in usual
Instant Messaging user interfaces on the computer.

It clearly appears that, depending on a dynamic
context, the ambient messaging application has to
select and use the best services to assess the situation
and to display information. The home context consists
of (i) the user context made of his location, preferences
and activity, (ii) the device context made of its location
and its capacities, (iii) and the external physical
context such as place properties (weather parameters,
physical location, etc.) [7].

Home devices and services connect and quit the
home network at any time. This is due to various
reasons including device management operations,
mobility, power saving measures, etc. For example,
smart phones and PDA are connected to the home
network as long as they remain physically in the home.
Service availability dynamic detection has to be
automated so that applications can benefit from it. A
final point that we would like to mention is referred to
as service ambiguity. Service ambiguity occurs when
several service providers meet a same requirement.
The system faces this problem when several services
are available with the adequate contextual properties at
runtime. It leads to composition unpredictability: the
system is then given to using distinct service providers
in identical situations. Service selection mechanisms
must be able to precisely select the best set of
resources among the available ones.

3. Our approach

3.1. Overall architecture
As presented in [6, 8, 9], we are working on an

open service-oriented computing architecture for the
home. This architecture comprises network-enabled
devices and computing platforms connected through
field buses.

Gateway

Business
Services

Home
Devices

Device Discovery
& Communication

Figure 1. Platform-centric architecture

Devices are pervasive elements integrated in the
house (screens, loud speakers, controllable shutters or
heaters for instance) providing basic services to sense
and act upon the environment. Many devices are today
implemented as service providers and requesters using
technologies like UPnP or IGRS for instance – see
www.upnp.org and www.igrs.org). The smaller
devices, in terms of computing resources,
communicate through ad-hoc wired or wireless
protocols. Proxies have to be created on a service
platform to make them visible as services. Computing
platforms often play the role of network gateways.
Such gateways are already present in many houses
(telecommunication Internet gateways, TV-connected
set-top-boxes or utility service gateways) and it is
likely that future homes will host several,
heterogeneous such computing platforms. Gateways
provide the resources needed to run higher level
services making use of the connected devices.

3.2. Gateway architecture
This gateway will be able to run high level services

and applications. As presented in the previous section,
there is a need for building context aware applications.
To enable the construction of such application, we
have developed a computing framework, depicted in
Figure 2, allowing context-aware service composition.

This framework is based on the following elements:

• A Service-Oriented Component Runtime providing
the underlying execution framework. This

framework, based on the notion of container, is
extensible. A container encapsulates a business
service and contains an extensible set of handlers
that can be called whenever the business service is
invoked.

• A Context Service aggregating different context
sources. This service provides all the necessary
information regarding the current execution
context. The framework provides an API to access
the context. In this work, we focus the attention on
the whole adaptation process, and we rely on
existing context monitoring systems [10, 11]. In
our approach, we assume that a service
representing the context is present, and we use well
known ontology (common vocabulary) [12] to
interact with this service.

• A set of autonomic handlers that can be attached to
business services. Handlers make use of the
context service to decide whether dynamic re-
composition is needed. In this case, the handlers
are in charge of selecting and binding the most
appropriate services.

S1 S2 S3

Context Service

Service-Oriented Component Runtime

Container with
Autonomic Management

Business
Service

Service
Runtime

Figure 2. Gateway computing framework.

We believe that this architecture enables the
construction of pervasive applications. Building such
application on top of a service-oriented component
model makes possible the externalization of the
dynamic context execution management. The
application logic code is not polluted with service
interactions. Thus coding a pervasive application
becomes possible to every application developers. The
following section presents in more details the different
elements of this architecture.

4. Autonomic computing framework

4.1. Service-Oriented Component Runtime
As introduced in [13], service-oriented component

runtime help developers to build SOC applications.

The motivation to use components to implement
service specifications emerges from the need to
separate SOC mechanisms from the logical code
implementing the service behaviour. The desire is to
delegate SOC mechanisms to a component container,
which will interact with the service broker at run time
to find available services and to publish the
component's provided services.

In [13], the general principles of a service-oriented
component model were introduced, which are:

• A service is provided functionality.

• A service is characterized by a service
specification, which describes some combination of
a service's syntax, behavior, and semantics as well
as dependencies on other services.

• Components implement service specifications,
which may exhibit implementation-specific
dependencies on services.

• The service-oriented interaction pattern is used to
resolve service dependencies at run time.

• Compositions are described in terms of service
specifications.

• Service specifications provide a basis for
substitutability.

IPOJO [14] is a prototype of a service-oriented
component framework. One of the main goals of
iPOJO is to keep service-oriented component
development as simple as possible, which means
keeping the component as close to a “plain old Java
object” (POJO) as possible. The code of a component
should focus on business logic, not on SOC
mechanisms or non-functional requirements. To reach
this goal, iPOJO provides a component container that
manages all SOC aspects, such as service publication,
service object creation, and required service discovery
and selection. Moreover, iPOJO containers are
extensible. Indeed, service interactions are not the only
non-functional preoccupation used in pervasive
applications. Pervasive applications can need non-
functional concerns as persistence, security, logging,
etc.

IPOJO is implemented on top of OSGi [15]. The
OSGi service platform defines a framework to
dynamically deploy services in a centralized
environment. The OSGi framework automatically
manages aspects of local service deployment, such as
Java package dependency resolution, but leaves
service dependency management as a manual task for
component developers. We choose the OSGi service
platform for three main reasons:

• It is service-oriented,

• It is dynamic,

• It is applicable to a large range of domains from
mobile phones to application servers.

IPOJO is named after the phrase “injected POJO”,
since the general approach of iPOJO is to inject POJOs
with handlers to manage non-functional behavior.
Indeed, POJO classes are manipulated (byte code
injection) to become iPOJO. Based on this injection
mechanism, iPOJO manages all service interactions
and injects selected service providers inside POJO
fields. Moreover, iPOJO provides an extensibility
mechanism allowing the development of handlers
separately from iPOJO core. A handler manages a non
functional requirement, and is plugged automatically at
runtime on the component container.

IPOJO is hosted as a subproject of the Apache Felix
incubator project.

4.2. Autonomic handlers

4.2.1. Principles
To automate the management of the dynamic

execution context, we propose to enhance the
component containers with a context-aware manager.
The role of this autonomic manager is to monitor the
execution context and to react on the component by
changing its bindings or acting on its lifecycle. In our
vision, a manager is developed in a generic way and is
driven at runtime by high-level goals and policies.

The decision-making process of a context-aware
manager is presented in Figure 3. This process is
composed of three main parts, detailed in the following
sections, and is configured by a service binding policy.
This policy contains service queries, expressed with
context properties. The first step of the decision
making process aims to create a system representation.
To achieve this goal, the autonomic manager senses
the environment. When the system representation is
updated, the autonomic manager analyses this
representation and produces an action plan containing
the set of actions to undertake. The execution of this
plan is made in a last step called reaction.

We have implemented the proposed context-aware
service composition manager as an iPOJO handler.
Our handler is configured inside the component
description. This configuration contains the service
binding policy describing for each service requirement
the contextual queries and a ranking policy. An
example of such policy is presented in section 5.1.

4.2.2. Monitoring
The monitoring part of an autonomic manager

listens to context events and updates the system
representation. In order to listen only to relevant events
impacting the system representation, an autonomic
manager extracts the relevant context information from
the binding policy. Then, the autonomic manager can
filter context event to select only needed changes.

Pervasive Applications, based on services, must also
handle dynamic service availability: service
publications, modifications and departures can occur
frequently. Tracking services in pervasive applications
consists of dynamically maintaining the list of the
available service providers satisfying service
requirements. The tracking mechanisms are commonly
specified in service middlewares through active and
passive discovery concepts. Active discovery enables
the component to send an active request at starting
time in order to initialize the list of available services.
Active requests are also relevant as soon as the
requirements are modified in order to refresh the list.
Passive discovery consists in the update of this specific
service list in reaction to service events generated by
the underlying system mechanism whenever a service
is published, modified or un-published. By listening to
these events, an autonomic manager updates the
system representation to maintain the set of consistent
service providers.

4.2.3. Situation analysis
When the system representation is updated (and

only in this case), the analytic phase of the autonomic
management begins. This phase aims to create the list
of actions to be undertaken to guarantee service
continuity. Figure 3 shows the analysis process of our
managers. The whole process is driven by a
representation of the underlying system. On this
representation, the autonomic manager can select the
best service to be bound with the managed element.

The diagnostic begins by confronting each
requirement expressed in the binding policy to the list
of available service providers. If at least one
mandatory requirement is not fulfilled, the manager
plans to invalidate the component and to unbind every
used provider. Else, the manager plans to validate the
component if it is not already valid. Then if a
requirement has several suitable providers, the
autonomic manager ranks them according to a ranking
policy to choose the best one. Precisely, the manager
calls a ranking method to sort acceptable services in a
total order. The ranking method is contained inside the
component implementation class. It allows developers
to program a complex ranking method. Then it plans to

re-compose services, i.e. unbind the no more used
providers and bind the new providers.

Our requirements are expressed in contextualized
terms. The evaluation of requirements aims to
dynamically compare queries against service provider
properties.

User context
change

Is the element
already valid ?

Are the
requirements

fulfilled ?

Unbind the
bound providers

Invalidate the
element

Wait for the
next event

no

Validate the
element Choose the best

providers (ranking)
for each

requirement

yes

Unbind
service

Service-re-
composition

Is the element
valid ?

noyes

yesno

Service
unregistered
and/or
coming out of
the query
scope

Service
registered
and/or
entering the
query scope

Update the system representation

Figure 3. Decision-making process.

4.2.4. Reaction
According to the action plan, the autonomic

manager needs to validate or invalidate the managed
element and / or re-configure service bindings.

As depicted on the Figure 4, validating a component
implies the publication of provided services and the
announcement of the new services to be discoverable.
Then, other components could use provided services.
Invalidating an element implies the reverse action. By
un-publishing services and by announcing their
departure, every element using these services and

associated resources must release them. The provided
services are no more discoverable.

The autonomic manager can decide to recompose
service binding. By changing the binding, the manager
changes the service provider used by the component.
The manager must release the no more used service
providers and bind the non-already bound ones. If a
selected provider is no more available, i.e. if it leaves
during the decision-making process, the element is
invalidated and waits for a new available provider.

Figure 4. Autonomic Manager Action on validation
and invalidation

5. Application

5.1. Ambient instant messaging
The scenario described in section 2 is implemented

above our architecture. The application is designed as
depicted in Figure 5. A context service gathers all the
relevant information coming from sensors in order to
assess:

• the location and the user willingness to
communicate of the user. User willingness to
communicate is key dynamic information to be
taken into account by the system. Unfortunately, it
is hard to measure this parameter. This criterion is
linked to unfaithful information such as user
activity and user preferences [16].

• the location of every mobile device (see the PDA
description).

The Instant Messaging (IM) client is divided into 4
types of components. The IM application is the central
component that is connected to the IM server on the
Internet through out-of-band protocols (here
Jabber/XMPP protocols). This component runs the IM
application logic. This component requires the best IM
User Interface (UI) service to diffuse the message.

Our autonomic manager is attached to the IM
application component. It dynamically reacts to

contextual information coming from the context server
in order to select the adequate IM UI provider.

The scenario involves several devices. These
devices are instances of the same UI component as
depicted in the XML metadata file below. The file
reflects the following description of the devices:

• A living room television with an attractive lighted
keyboard in the lounge. User willingness is
expected to be high.

• An ambient lamp able to convey information
thanks to the variation of the brightness, the pulse
frequency, and the colour of the light. A low user
willingness to communicate is enough to use this
incomplete user interface.

• Loud speakers with Text-To-Speech software in
the kitchen and in the living room. User willingness
is set to "medium" since listening to audio
messages ask for some user attention but since
there are no speech recognition, the user is not
expected to answer to the messages.

• In the bedroom, a computer with a standard and
complete user interface. User willingness is
expected to be high.

• A wifi PDA with a standard and complete user
interface. Its location is dynamically set. User
willingness is expected to be high. User rating is
set to "low" since the user would prefer to chat
with any other device which is not as constrained
as the PDA.

Figure 5. Architecture of the AIM application.

The following snippet shows the binding policy of
the IM Application. First, based on iPOJO field

injection mechanism, a service requirement must
contain the field in which the selected provider will be
injected. Then the query is expressed in terms of
contextual variables: the location of John. To finish, a
ranking method is set to sort providers if several suit
the filter. Inside the IM Application code, the
developer can directly use the “relay” field. This field
will always target the best user interface. If there is no
suited provider, the dependency will becomes invalid,
and the component will be stopped until a suited
service provider appears. During this period of times
John will not be reachable for other users. This is a
quite simple policy, but we are currently working on
how to express more complex policies, such as taking
the closer media in the home if there is no media in the
desired room.

<ipojo
xmlns:cadep="cadep.CadepHandler" >
 <component className="aim.App">
 <cadep:dependency
 field="relay"
 filter=
 "(location=${Context:john.location})"
 ranking-method="rankRelays"
 />
 </component>
 <instance component="aim.App"
name="IMApplication"/>
</ipojo>

Figure 6 : AIM Application metadata

5.2. Evaluation
To test our approach, we set up a scenario using the

ambient instant messaging application described
below:

1. John enters the home and first goes in the lounge
to have a nap on the couch. A control point is attached
to John. John willingness to communicate is low. The
ambient lamp is chosen by the system and conveys
light information.

2. John wakes up after 20 minutes. He goes to the
kitchen to eat something and drink a soda. John hears
the messages through the text-to-speech system.

3. John wants to answer to an important message of
his friend who is chatting. He returns to the lounge and
sits in front of the TV. John willingness is high, the TV
is chosen.

4. During the active chat with his friend, he realizes
that he misses information on the Internet. So he goes
to the bedroom to use the computer. The computer is
connected to the IM system.

5. He goes out of the home. He continues to read his
messages on his PDA.

We compare two ambient instant messaging
applications with the same scenario. The first one uses
OSGi standard programming model and the second
one uses iPOJO with our autonomic manager.

The first comparison between the two applications
refers to their size. The context-aware part of the
application without iPOJO has 252 lines against 133
inside the application using iPOJO. The difference
comes from the code managing the context-aware
composition.

A second comparison refers to the service selection
time. We have implemented a benchmark measuring
the service selection time in the two applications. This
benchmark follows the five steps of the scenario. It
changes user location and then sends a message to the
user. This message is displayed on the most
appropriate media. We measure the time needed to
display a message in the two different implementations
of the application.

To obtain accurate results, our scenario is played
10000 times, and we measure the average times. This
evaluation was done on a 5 five years old laptop with a
Pentium 3 at 1 GHz and 512 Mo of memory. Our
benchmark shows an overhead of 9% in the application
with our iPojo manager. This overhead comes from the
invocation of the ranking method that uses reflection,
and from the injection mechanism.

The overhead brought by the use of the iPojo
framework seems reasonable in comparison to the
development advantages. The benefits are naturally the
re-use of robust automatic mechanisms offered by
iPojo handlers and the simplicity of POJO
developments applied to complex applications.

6. Related Work
Service-Oriented Computing is a new development

paradigm enjoying of a good popularity nowadays.
Thanks to the Web Services success, the Service-
Oriented Computing has become very famous.
However, development models and the need for
dynamic execution frameworks are not deeply studied.
Service-Oriented Component Runtime begins to
appear with OSGi technology, Service Binder [13],
Service Component Architecture [17] and Spring-
OSGi [18]. These component models aim to help
developers to implement service application. OSGi
technology provides a dynamic service platform. The
programming model provided by OSGi specification is
very basic and the developer needs to manage all
service interactions within the business code. Service
Binder was the first service-oriented component model
proposing to manage service dynamics outside the

business code. However, Service Binder is not
extensible and its programming model is intrusive for
the developer. Service Component Architecture (SCA)
targets mainly Web Services. It proposes a standard
development model to develop service applications.
SCA does not address dynamic availability and does
not manage dynamic composition. Spring-OSGi is a
new project, proposing to use Spring component
model to develop service application on the OSGi
platform. As with iPOJO, this new service component
model uses POJOs and tries to address dynamic
service availability. Spring-OSGi uses an aspect
framework to inject service dependencies. However,
the developer needs to explicitly manage exceptions
when an unavailable service is used. Spring-OSGi also
does not manage dynamic service properties and
component factories.

The emergence of smart and communicating
devices has lead to a new computing paradigm
commonly called pervasive or ubiquitous computing.
Pervasive computing makes an extensive use of
context. There have been many works over the last
decades in the research field of context-aware and
context-sensitive application. Most of these works
focus on how to gather, store and retrieve context
information with the use of models, ontology and
semantics [19, 10, 11, 12]. These very interesting
works tackle only a subpart of the problem of context-
aware applications. Indeed, building such applications
involves not only the retrieval of context information
but also the adaptation of applications behaviour.
Hereafter we present some works taking into account
the context–aware adaptation.

In [20] and [21], frameworks called Safran and
Camido are presented as enabling designers to create
component based context-aware applications. Both
works propose a container which handles the context-
aware adaptation process. We think that the general
service trading mechanisms at the basis of our
framework is more given to represent the pervasive
elements of the targeted environments. Thus, the loose
aspect of component coupling is emphasized in our
work.

7. Conclusion
Home-context applications are generally difficult to

build. Indeed, developers need to manage the context
and the service dynamics in addition of their business
code. In this paper, we present our architectural
approach to Pervasive Computing. We believe that
service-oriented computing is a good challenger to
build pervasive application. Our approach is based on

a service-oriented component framework. Moreover,
we propose to delegate the management of the
contextual service composition inside component
container thanks to an autonomic manager. The
manager tackle critical home-context application
problem as context dynamicity and service ambiguity.

Our work distinguishes itself from the state of the
art by proposing an open architecture and the
corresponding runtime that automatically track devices
in the environment and adapt the application to fit the
current context. The use of a service oriented
component model allows our architecture to takes into
account new runtime conditions such as the arrival, the
modification and the departure of devices on the
network, and the change of application service
requirements bound to contextual events.

We implemented this architecture and tested
applications above the OSGi framework and the
Apache iPOJO service component model. This work
has been demonstrated during the past review of the
ITEA ANSO project. It has also been demonstrated at
the IEEE Service Computing Contest 2006 and at the
IEEE Consumer Communication and Networking
Conference 2007.

We are currently investigating two main
perspectives of this work. The first one concerns the
service-oriented component runtime. We are studying
how to improve service-component runtime with
hierarchical service composition mechanisms. The
second one is about the autonomic architecture. We are
investigating a hierarchical architecture for autonomic
managers in the home control domain. This
architecture enables more powerful reconfiguration
and optimizes the cohabitation of several applications
on the gateway.

8. References
1 M. Weiser, “The computer for the 21st century”,

Scientific American, 265(3):66-75, September 1991.
2 A. Ferscha, “Pervasive computing and communications”,

Beyond The Horizon Thematic Group, Information
Society Technologies, 2005.

3 M. N. Huhns and M. P. Singh. "Service-Oriented
Computing: Key Concepts and Principles". IEEE Internet
Computing, vol. 9:pages 75–81, Jan./Feb. 2005.

4 C. Marin, P. Lalanda and D. Donsez, “A MDE approach
for power services development”, Internatinoal
Conference on Service Oriented Computing, Amsterdam,
december 2005.

5 J. O. Kephart and D. M. Chess, "The vision of autonomic
computing", IEEE Computer, vol. 36, no. 1, 2003.

6 André Bottaro, Anne Gérodolle, Philippe Lalanda,
"Pervasive Service Composition in the Home Network",
21st International IEEE Conference on Advanced

Information Networking and Applications (AINA-07),
Niagara Falls, Canada, May 2007

7 F. Ramparany, J. Euzenat, T. Broens, J. Pierson, A.
Bottaro, R. Poortinga, "Context Management and
Semantic Modeling for Ambient Intelligence",
Proceedings of the First Workshop on Future Research
Challenges for Software and Services (FRCSS), April
2006.

8 P. Lalanda and J. Bourcier, “Towards autonomic
residential gateways”, IEEE International Conference on
Pervasive Services (ICPS 2006), June 2006.

9 J. Bourcier, C. Escoffier, P. Lalanda, “Implementing
home-control applications on service platform”, 4th
IEEE Consumer Communications and Networking
Conference (CCNC’07), Las Vegas, January 2007.

10 A. Ward, A. Jones, A. Hopper, "A New Location
Technique for the Active Office". IEEE Personal
Communications 4(5) (1997).

11 D. Bunting, M. Chapman, O. Hurley, M. Little, J.
Mischkinsky, E. Newcomer, J. Webber, K. Swenson,
“Web Services Context (WS-Context) Version 1.0”, July
2003.

12 H. Chen, T. Finin, and J. Anupam "The SOUPA
Ontology for Pervasive Computing", International
Conference on Mobile and Ubiquitous Systems:
Networking and Services, Boston, August 2004.

13 H. Cervantes, R. Hall, "Autonomous Adaptation to
Dynamic Availability Using a Service-Oriented
Component Model", 26th ACM International Conference
on Software Engineering, Edinburgh, May 2004.

14 C. Escoffier, R. Hall, P. Lalanda, "iPOJO: An extensible
service-oriented component framework” IEEE Service

Computing Conference (SCC 2007), Salt Lake City, July
2007.

15 OSGi Alliance, “OSGi Service Platform Core
Specification Release 4”, October 2005.

16 J. Christensen, J. Sussman, S. Levy, W.E. Bennett,
Tracee Vetting Wolf, Wendy A. Kellogg, "Too much
Information", ACM Queue, Vol. 4, N°. 6, July-August
2006.

17 F. Curbera, D. Ferguson, M. Nally and M. L. Stockton,
"Toward a Programming Model for Service-Oriented
Computing" in Proceedings of the 3rd International
Conference on Service Oriented Computing (ICSOC'05),
December 2005.

18 Interface21, “Spring OSGi Specification (v0.7),”
http://www.springframework.org/osgi/specification,
2006.

19 G. Chen, D. Kotz, "Context-Sensitive Resource
Discovery", Proceedings of the First IEEE International
Conference on Pervasive Computing and
Communications, p. 243-252, Fort Worth,Texas, March
2003.

20 P.-C. David, T. Ledoux, "An Aspect-Oriented Approach
for Developing Self-Adapting Fractal Components",
Proceedings of the 5th International Symposium on
Software Composition (SC2006), March 2006.

21 N. Behlouli, C. Taconet, G. Bernard, "An Architecture
for Supporting Development Execution of Context-
Aware Component applications", Proceedings of the 3rd
IEEE International Conference on Pervasive Services
(ICPS’06), June 2006.

